

P
SC

H

PSCH

PD
IR

TC
T
R

PSC
H

M
M

XU

MMXU
M

M
X

U

R
D

IR

R
D

IR

PTOC

PTOC

PT
IC

PTUF

TVTR

TV
TR

T
V

T
R

TVTR

PDIS

P
D

IS

PDIS

PTUF

P
T
U

F

PTU
F

P
D

IF

TC
TR

Model Based

PAC.DECEMBER.2010

This article describes the method's use for fault diagnosing

through a proof-of-concept prototype developed in a research project.

 The adoption of IEC 61850 standard on Substation Automation Systems

(SAS) requires new ways of testing and diagnosis. Testing is required to ascertain

their correct behavior, while diagnosis is required to find and correct any faulted

function detected in a test. The object oriented aspects of IEC 61850 suggests

a model based equivalent

concept for testing and

diagnosis. This issue has

been partially addressed

by Cigré Working Group

B5.32 in proposing a

structured object oriented

methodology for Functional

Testing of IEC 61850 Based

Systems.

This article reviews this method and describes its use for fault
diagnosing through a proof-of-concept prototype developed in a research project.
In this tool, fault diagnosing in Substation Automation Systems (SAS) is done
using a model-based approach whereby an object oriented model of the system is
provided that can be simulated while faults are identified and pinpointed. Testing
is also performed in an objected oriented way, conducted by following a test script
according to the scheme proposed by Cigre WG B5.32. In addition, fault diagnosis
may be performed by correlating the test results with the model architecture.

This article reports the results of a Brazilian research project jointly sponsored
by CHESF (Companhia Hidro Elétrica do São Francisco) and ANEEL (Agência
Nacional de Energia Elétrica), and conducted by UFCG (Universidade Federal da
Paraiba), to develop a proof-of-concept software tool that enables automation
engineers to build, run and debug functional tests for IEC 61850-based systems.
The testing is based on the specification produced by WG B5.32. An extension of
this work is being developed to allow diagnosis, using the same tool.

Automation Model
A simple example will illustrate the test method proposed by Cigre, taken from

the work done by WG B5.32. Only a brief sketch of a test scenario will be given
due to space restrictions. Please refer to the full WG B5.32 technical brochure

Diagnosis of
IEC 61850 SystemsMMXU

and

M
od

el
 B

as
ed

 T
es

ti
n

g

 PAC.DECEMBER.2010

IE
C

 6
18

50

by Iony Patriota de Siqueira, Chesf, Brazil

47

21

1

10

SAS

XCBR1

TCTR1

 command-response

 alarm

 com
m

and-response

 c
om

m
an

d-
re

sp
on

se

CSWI1

 PDIF

 sampled-current

12

21

12

21

12

21

22

XCBR2 command-response CSWI2
12

TCTR2
 s

ampled-curre
nt

 IHMI

1

12

12

22

 trip-position
 position-trip

{<
 1

00
 m

s}

 command-position

 command-position

 command-display

 current

 current

:XCTR1 :XCTR2 :PDI :CSWI1 :XSWI2 :XCBR1 :XCBR2 :IHMI

21
21

22

22

12

12
12

12
12

10

12

1

1

{<
 1

00
 m

s}

{<
 1

00
 m

s}

4848

document. In this Figure the numbers shown are PICOM
types (12 = Operated, 22 = Trip, etc.). The left-hand side
of the figure also shows the performance requirements as
UML time delay restrictions.

Further details about the SAS could be included
in a UML deployment diagram, showing the physical
distribution of logical nodes in servers, their labels,
network addresses, etc., as shown in Figure 3.

Test Model
Cigre WG B5.32 suggested a test architecture consisting

of several test components, following the UML Test Profile
of OMG (Object Managing Group), as depicted on Figure
4. In this architecture, the test objects are instantiated and
connected to the SAS objects as defined in Figure 2. Figure
5 shows the objects instantiated from the test classes
necessary to exercise this example SAS. The figure also
shows their logical connection to the SAS Logical Nodes
(LN).

In this model each breaker is modeled by instances of
DigitalOutput and DigitalInput classes, to simulate their
command and response messages, while each current
transformer is modeled by an instance of CurrentOutput

for details. The approach is based on UML, text and XML
formats, used to specify Functional Use Cases and other
UML artifacts. Consider the SAS for a simple one-line
diagram of a transformer bay in a substation shown in
Figure 1, taken from WG B5.32 Technical Brochure, with
the corresponding logical nodes defined by IEC 61850.
This figure uses a UML communication diagram to specify
the message types exchanged by the logical nodes of the
SAS.

This type of diagram can be part of a functional
specification of an SAS system, not covered by current
version of IEC 61850, that includes a Functional
Implementation Conformance Statements (FICS), in a
format proposed by Cigre WG B5.32 shown in Table 1.

In addition, other UML diagrams may be used for
functional specification. For example, a UML sequence
diagram is shown in Figure 2 that may be part of the FICS

1 Example - substation layout
diagram

1

Xxxx PRP

and HSR are

new and offer

additional

redundancy

levels. This

is required

especially in

Processes Bus

applications

with sampled

values but

can work at

any level. In

a process bus

with sampled

values, seamless

or zero-

recovery-time-

redundancy is a

prerequisite.

1 Functional specification by UML
sequence diagram

2

 Functional Implementation Conformance Statement
Code
Name
Description
Customer
Substation
SCL File
Primary User (Actor)
Secondary User (Actor)
Stakeholder & Interest
 Function Description
Trigger
Components or Logical Nodes
Process Equipment
Performance
Preconditions
Post conditions on Success
Post conditions on Failure
 Use Case Description
Basic Course Description
Alternative Course Description
Exception Course Description
Extensions

 Functional implementation
conformance statement
table 1

 Functional Test Case
Code
Name
Description
 Use Case Description
Customer
Substation
SCL File
FSR File
FICS File
 Test Description
Test Connection
Test Setup
Test Start
Test Stop
Test Disconnection
Test Verdict

 Functional test case templatetable 2

M
od

el
 B

as
ed

 T
es

ti
n

g

IE
C

 6
18

50
by Iony Patriota de Siqueira, CHESF, Brazil

PAC.DECEMBER.2010

48

 Network Simulator

 Operator Simulator

 Test Timer

 SASTest Context

Test Arbiter

Tester

Test Scheduler

Voltage Output

Current Output

Digital Input

Digital Output

 Test Component

 Timer

 Test Context

 Arbiter

 Scheduler

 Process Simulator

N
et

w
o

rk

XCBR2
IP 10.0.0.15

E1Q3SB1IED <<device>>

XSWI
IP 10.0.0.17

E1Q3SB3IED <<device>>

TCTR2TCTR1
IP 10.0.0.13

D1Q2SB3IED <<device>>

XCBR1
IP 10.0.0.11

D1Q2SB1IED <<device>>

PDIF
IP 10.0.0.14

D1Q2BP1IED <<device>>

CSWI2
IP 10.0.0.16

E1Q3SB2IED <<device>>

CSWI1
IP 10.0.0.12

D1Q2SB2IED <<device>>

IHMI
IP 10.0.0.18

 A1KA1IED <<device>>

to the system. The system should also provide test script
management (script creation, visualization, editing,
addition, removal, etc.) and should be able to read in SAS
models provided in IEC 61850 Substation Configuration
Language (SCL).

The tool should provide for visualization and editing
of test scripts in a command language and also in an XML
format. Automatic conversion between these formats
should be provided. The tool should perform syntax
guidance and checking during test script editing according
to the XML schema developed by Cigre WG B5.32. The
test execution environment should provide execution
commands (Run all, Run selected, Pause, Stop, etc.),
Debugging mode (Run debug, breakpoints, single step,
variable watch, etc.), and Simulated time speed control to
accelerate or decelerate the simulation as compared to real
time.

For diagnosing, the execution environment should
provide mechanisms for the insertion of faults in any
place on the SAS model. The tool should provide fault

class, simulating their sampled currents. A network
simulator (or analyzer) is instantiated and assigned to
monitor the messages related to logical node PDIF, to
measure its response time. Messages sent and/or received
by the operator are modeled by an Operator object. This
setup can be described more fully as a functional test case,
described as a UML Use Case artifact. This is shown in
Table 2 using a format proposed by Cigre WG B5.32.

Test scripts can specify signals to be injected in the
system as well as expected signals. Each command in
this script is a method call supported by the instantiated
class. The last commands (verdicts) evaluate the results of
the test case. Test cases can also be specified in XML. The
reader is referred to the Cigre WG B5.32 report for the full
description of this test and the associated XML schema.

Functional Test Requirements
To automate the execution of test scripts, a tool was

specified following requirements developed by CHESF and
implemented by UFCG. The tool will allow automation
and protection engineers to develop and debug SAS
designs, and check their correctness through test scripts.
The requirements set by CHESF specify that initially the
system will be used to build and debug tests in a simulated
SAS environment only. In a subsequent phase, the system
may be used during actual operation on a real SAS, by
injecting actual messages at appropriate SAS access
points, recording appropriate messages and evaluating
the performance and functionality through test scripts.
It should be possible to execute test scripts and report
on the test verdicts, with full support for all B5.32 test
objects (like VoltageOutput, CurrentOutput, DigitalInput,
DigitalOuptut, NetworkSimulator, Operator, TestTimer,
TestScheduler, TestArbiter).

According to CHESF requirements, the SAS should be
represented by a model and should be simulated by the
tool. The LNs most commonly used in SAS design should
be supported. The design should be component-oriented
to allow third parties to develop new LNs and plug them

This research provides an example of
a proof-of-concept implementation of

a tool to help automation and protection
engineers design and test SASs.

Iony Patriota de
Siqueira was born

in São José do Egito,

Brazil. He has an

MsC degree in Op-

erations Research,

an MBA in Informa-

tion Systems, and a

finishing PhD level in

Electrical Engineer-

ing. He is a member

of Cigré and IEEE,

former convenor of

Cigré WG B5.32 on

Functional Test-

ing of IEC 61850

Based Systems,

Secretary of Cigré

Study Committee

B5, and convenor of

Brazilian Technical

Committee of IEC

TC 57. Currently

his is vice-director

of Brazilian Mainte-

nance Association

and Manager of

Protection and Au-

tomation at Chesf,

with interest in pro-

tection, automation,

reliability, mainte-

nance and system

performance.

1 Test profile as a UML class diagram 4

1 UML deployment diagram 3

 PAC.DECEMBER.2010

49

by Iony Patriota de Siqueira, CHESF, Brazil

Currrent
Output

Time Control

<< active>>
Logical Node

Bus

SAS

<< active>>
Logical Node

Test Timer

Configuration

Test Timer

<< active>>
Test Scheduler

Script

Configuration
Loader

Script Loader

SCL File

Script File

Network
Simulator

Operator

Xcbr1_Out
:DigitalOutput

Xcbr1_In
:DigitalInput

Tctr1
:CurrentOutput

Tctr2
:CurrentOutput

Xcbr2_Out
:DigitalOutput

Xcbr2_In
:DigitalInput

Network1
:Network

 Network Simulator

Operator1
:Operator

 Operator Simulator

 Process Simulator

21

1

10

SAS

XCBR1

TCTR1

 command-response

 alarm

 com
m

and-response

 c
om

m
an

d-
re

sp
on

se

CSWI1

 PDIF

 sampled-current

12

21

12

21

12

21

22

XCBR2 command-response CSWI2
12

TCTR2
 s

ampled-curre
nt

 IHMI

1

12

12

22

 trip-position
 position-trip

5050

diagnosis functionality through an automatic fault
diagnosis algorithm, thus allowing the source of faults to
be pinpointed, down to the level of Logical Nodes.

Functional Test Tool
As tool called Smash (Smart SAS Test and Fault

Diagnosis) is being developed to satisfy the requirements
outlined above. This section describes its architecture,
interfaces and current development status, according
to Figure 6. The SAS is modeled by LNs which are
components that simulate the behavior of functions such
as differential protection (PDIF), circuit breakers (XCBR),
etc., as per IEC 61850 standard. Since the architecture
is componentized (the LNs are components that obey
a standard discovery interface), new LNs can be added
by third parties to the tool. The LNs are “active” classes,
meaning that they run in a separate thread. This enables
time delays to be introduced in their behaviors. All
Publish-Subscribe communication between LNs and other
test components is controlled by a common software bus.
This allows the simulated environment to include network
delays in the simulation. The main data structures are the
LNs themselves as well as the Configuration component
containing an in-memory version of the SCL file and a
Script component containing an in-memory version of the
script being executed. The TestScheduler, as described in
the UML Test Profile, is the main simulator that interprets
and executes script commands. Simulated time control is
provided by the Time Control component. This is where
speed control is implemented. All components requiring
time service must interface with this component.

User Interface
The Smash User Interface follows the traditional layout

of software integrated development environments. Figure
6 shows an outline of the Smash User Interface.

At the top left of Figure 7, is a menu that provides test
script management, execution control, etc. Below the

menu is a tool bar for test script execution and debugging,
further detailed in Figure 8. Observe that a debugging
mode is available to single-step execution, set breakpoints,
examine the value of variables, etc.

Below the tool bar (Figure 8) is an area that shows the
available tests. A test can be chosen and run from this
list. Figure 9 shows the result of the test verdicts after
a test run, showing that Verdict 6 did not pass for the
Transformer Differential Protection SAS.

On the bottom left of the test environment there is
an area that more fully describes the functional test case
and provides access to the “Functional Implementation
Conformance Statement” (FICS) and “Functional
Specification Requirement” (FSR) files and version
information, as suggested by Cigre WG B5.32. On
the center panel, the test script is exhibited, either in a
scripting language or as XML text. Debugging allows one
to set breakpoints in the test script on this panel. Figure
9 shows the script with two breakpoints with execution
stopped at the second one. The bottom panel can be used
to show error list found on the test script, or to watch any
variable defined on the model, as shown on Figure 10.

Fault Simulation
Fault simulation is a requirement set by CHESF to

verify the fault coverage and completeness of a test plan.
As suggested by Cigre WG B5.32, FMEA and HAZOP
are two methods standardized by IEC that can be used to
analyze possible failures of a system, and to avail the fault
coverage of any proposed test plan. Software components
like logical nodes may present many failure modes, such
as:

 Wrong parameters
 Wrong code or software bugs
 Wrong or absence of input/output signal/messages
 Wrong timing (delay) for input/processing signals/

messages.

1 Test setup as a UML communi-
cation diagram

5 1 Smash Architecture 6
Smash (Smart SAS Test and Fault Diagnosis)

M
od

el
 B

as
ed

 T
es

ti
n

g

IE
C

 6
18

50
by Iony Patriota de Siqueira, CHESF, Brazil

PAC.DECEMBER.2010

50

 Debug selected

 Step forward

 Speed control

 Run selected

 Run all

 Pause

 Stop

Full tests with real users
and systems will validate the

design of the tool.

1 Depicting test script verdicts 9

For testing purposes, logical nodes are treated as black
boxes, so that their failure modes are detected by loss or
degradation of an expected external behavior.

Table 3 shows a simplified FMEA table proposed by
Cigre WG B5.32 that can be used to relate possible failure
modes (FM) of a system to functional failures (FF) they
impact, and to the test cases (T) capable of detecting each
failure mode, as shown on the lower part of the table.

To avail the test coverage and the corresponding
diagnosing of each test plan, the right panel of the Smash
test environment can be used to inject faults on the model
and simulate the verdicts generated by the test script. For
each set of faults injected, the test verdicts can be used to
avail the coverage of the test set, and also to suggest the
fault location in the SAS.

Conclusion: This research provides an example of
a proof-of-concept implementation of a tool to help
automation and protection engineers design and test
SASs. Preliminary results show that simple SASs can be
modeled, simulated, exposed to failures and automatically
tested and diagnosed using an implementation of the Cigre
WG B5.32 specification. A GOOSE Viewer and a GOOSE
Sniffer are two recent additions to the tool, allowing it to
inspect real messages exchanged between the model and
the tested SAS. Full tests with real users and systems will
validate the design. Further developments are underway
to increase the library of models to cover all IEC 61850
logical nodes.

1 Test Script Execution Control
Tool Bar

8

1 Smash Main Screen 7

 Variables' watch panel 10

FMEA
Failure Mode

FM1 FM2 FM3 ... FMn

 FUNCTIONAL
 FAILURE

FF1 X ...
FF2 X X ... X
...

FFn X X ... X
 COVERAGE X X X ... X

 TEST CASE
T1 X ... X
... X ... X
Tn X ... X

Failure mode & effects analysis
table 3

The author

would like to

thank

all members

of Cigre WG

B5.32, and

the Smart

Diagnostics

team at UFCG

for the fruitful

discussions and

implementation

effort, and

CHESF and

ANEEL for

the financial

support to this

research.

 PAC.DECEMBER.2010

51

